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16.30/16.31 Problem Set 3

1 LQR Control Design

This problem is designed to give you insight into the LQR control design process. Consider the
following one-state system.

ẋ(t) = x(t) + u(t)

where x(t) ∈ R. We would like to design a controller of the form: u(t) = −Kx(t). Please answer
the following questions. Please be careful with your analytical calculations as you integrate and
differentiate functions. Please feel free to use Matlab symbolic toolbox, Mathematica, or Maple.

1. For what values of K is the closed-loop system stable? Please write down the dynamics gov-
erning the closed-loop system. Then, use the eigenvalue stability criterion to assess stability.

2. What is the response of the closed loop system x(t) when we start the system from initial
condition x(0) = 1? Please use the matrix exponential to write down the system response.

3. Let us define the state cost as follows:

Jx =

∫ ∞
0

αx2(t)dt.

where α is a scalar constant. What is Jx as a function of K and α? Please use the analytical
form of x(t) from part (2) to compute Jx. You will need to integrate an exponential function.

4. Let us define the input cost as follows:

Ju =

∫ ∞
0

u2(t)dt.

What is Ju as a function of K? Please use the fact that u(t) = −Kx(t) and use the analytical
form of x(t) from the part (2) to compute Jx. You will need integrate an exponential function.

5. Now, let the net cost function be:
J = Jx + Ju.

What is the optimal gain K that minimizes J? Please directly work with the results you
obtained in Parts (3) and (4) to find the minimizing K as a function of α. Please do not use
the Riccati equation. Please use the “optimality condition for one variable.” That is, directly
solve K from the equation: ∂J/∂K = 0. You will need to differentiate K, and then you will
need to solve for the roots of an equation that is quadratic in K. The variable α will be a
parameter in this quadratic equation. Choose the root that guarantees stability.

6. Now consider the following cost function:

JLQR =

∫ ∞
0

(αx2(t) + u2(t))dt

Please use the Riccati equation to find the optimal K as a function of α.

7. How does K change as a function of α? Consider the two cases: (i) as α → ∞ and (ii) as
α→ 0. Did you expect K to change as you found out? Please explain in a few sentences.
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2 LQR Design for a Drone Hover Controller

Recall that in PSET 2, we represented the drone dynamics in a way that the dynamics became
separable. This allowed us to design a separate controller for each independent loop using pole
placement.
In this PSET, we choose the input the our drone system to be the thrust of each of the four
propellers (compare this to the last PSET where we used (T, τy, τp, τr)

′). We will be able to setup
the control design problem as an optimization problem of special form so that we can apply the
LQR framework.

2.1 Drone Dynamics

Let us define some notation first:

• P are inertial XYZ-world coordinates

P = (X,Y, Z)′

of the drone’s center of mass.

• ṗ is the quadroter’s velocity wrt. the world coordinate frame, expressed in the body frame

ṗ = (ẋ, ẏ, ż)′

• O is the euler-angles (yaw, pitch, roll)

O = (ψ, θ, φ)′

relating to a rotation RB2W to translate a vector expressed in the drone’s bodyframe to world
coordinates by subsequent rotations about euler-roll about x, pitch about y, yaw about z.

• W−1 transforms the body-angular rates

ȯ = (p, q, r)′

about local x-y-z-axes to euler-rates

Ȯ = (ψ̇, θ̇, φ̇)′

• Let G be the gravitational vector expressed in world coordinates and J the quadrotor’s inertia
expressed in the body frame.

Now, let us define the state variables and the input variables:

• The state variables vector, x, is defined as follows:

x =


P
O
ṗ
ȯ
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• The input variables are chosen to be the commands sent to the motors. These commands are
proportional to thrust of each of the motors, so let’s call these commands Ti.

u = uPSET3 = ucommands = [T1, T2, T3, T4]
′

Note that, assuming that the total thrust is fully aligned with the body-z-axis, there is a
linear transformation that transforms the system input in PSET 2 uPSET2 = [T, τy, τp, τr]

′

to the system input in this PSET ucommands = [T1, T2, T3, T4]
′ via a matrix M.

So we have

uPSET2 = Mucommands

or, in terms of the individual inputs,

T = M(1,:) ucommands

τy = M(2,:) ucommands

τp = M(3,:) ucommands

τr = M(4,:) ucommands

We can substitute these equations into the dynamics equations from PSET 2 and we will get
drone dynamics of the form

ẋ = f(x,ucommands, t).

Now, recall that a linearized plant is of the form

4ẋ = A4x + B4u

This form allows us to set up the design of a full-state feedback controller K as an optimization
problem that can be solved using the LQR framework.
We define the cost functional as

J =

∫ ∞
0

xTQx + uTRu dt

We aim to minimize this cost functional subject to the dynamics 4ẋ = A4x + B4u. With
slight abuse of notation we will refer to these dynamics as ẋ = Ax + Bu in the remainder of
this document.

2.2 Linearization, Dynamic Analysis, and Feedback Control

1. Please update your toolbox by downloading the toolbox from https://github.com/Parrot-
Developers/RollingSpiderEdu (or pulling the current version if you use git).

2. Conceptually, explain the relation between optimizing the chosen cost functional and the
actual goal of designing a hover controller for the drone system.
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3. Now let us find the linear plant that we will use to compute the LQR controller. To this
end, we will linearize the complex drone model from the Simulink simulation with the inputs
being the motor commands Ti.

Please use the linearizeDrone motorcmdTostate.slx and Simulink’s ControlDesign/Linear Anal-
ysis tool to find the A,B,C,D matrices around hover condition for this complex model.
What are the A an B matrices?

4. Please look at the following Matlab file in the toolbox:
/trunk/matlab/Simulation/controllers/controller fullstate/LQRControl.m.
This file provides a template for designing the LQR hover controller, with preset values for
the bounds in Bryson’s rule and cost weights for state error and control effort.
Comment on the choice of the preset bounds and weights. Are they intuitive? Are they more
intuitive than choosing eigenvalues for pole placement?

5. Use the LQRControl.m-script and your results from the linearization in 2.2.3 to compute
Klqr. Then use Simulink to simulate the LQR-controller with the linear plant model that you
found in 2.2.3.
An easy way to implement the effect of having modeled the system around our equilibrium
point is to simply set the initial condition of the system to −xeq, i.e.
x0 = 0, 0, 1.5, 0, 0, 0, 0, 0, 0, 0, 0, 0 and then have the system being controlled into the origin.
Please plot positions and orientations.

Note that this simulation will not involve the complex nonlinear drone model of our Matlab
toolbox, which we use for the labs. This is a simple simulation, where the plant model is a
simple linear system with A and B matrices found in 2.2.3.

6. Now, try to tweak the bounds and cost weights to achieve a faster altitude response of the
drone. Keep in mind that the control inputs into the plant are the four motor commands,
which are proportional to the thrust provided by the motors. The LQR-optimization tries
to minimize costs caused by these commands. Gaining altitude (hence changing the z-state)
requires all four motors to provide considerably more thrust while changing e.g. the roll angle
can be achieved by little differences in thrusts. To considerably change the altitude response
you should therefore mainly tweak the overall control effort costs ρ and the weight on the
state z.
Use Matlab/Simulink to simulate this second controller with the linear model that you found
in 2.2.3.
Please plot positions and orientations, comment on your experience in finding new suitable
cost weights and describe the bounds and weights you chose.
Note that this simulation will not involve the complex nonlinear drone model of our Matlab
toolbox, which we used for LAB 1. This is a simple simulation, where the plant model is a
simple linear system with A and B matrices found in 2.2.3 of this problem.

3 Time spent

Please indicate the approximate amount of time you spent on this assignment.
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